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Abstract

A second order accurate finite difference method is presented for solving two-dimensional variable coefficient elliptic

equations on Cartesian grids, in which the coefficients, the source term, the solution and its derivatives may be non-

smooth or discontinuous across an interface. A correction term is introduced to the standard central difference stencil so

that the numerical discretization is well-defined across the interface. We also propose a new method to approximate the

correction term as part of the iterative procedure. The method is easy to implement since the correction term only needs

to be added to the right-hand-side of the system. Therefore, the coefficient matrix remains symmetric and diagonally

dominant, allowing for most standard solvers to be used. Numerical examples show good agreements with exact

solutions, and the order of accuracy is comparable with other immersed interface methods.
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1. Introduction

Elliptic problems with discontinuous coefficients and singular sources are often encountered in fluid
dynamics and material science. These interface problems usually lead to non-smooth or discontinuous
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solutions across an interface. Traditional Cartesian finite difference methods work poorly for these prob-

lems since the numerical discretization is not well-defined across the interface.

In Peskin�s [15] immersed boundary method (IB), originally developed to model blood flow in the heart,
singular forces are smeared out by a discrete delta function. The idea has been extended and applied to

solve a number of interface-related problems. For example, in [3,4,16,17] the surface tension effect was

introduced as a new, smooth forcing term in the momentum equation leading to continuity in pressure.

Material properties may also be smeared out (e.g. using a level set function [4,16]) removing discontinuities

across the interface, making the solution continuous, smooth and suitable for standard finite difference

schemes. The IB is widely used because of its robustness, and it can easily be implement into existing CFD

codes, even in multiple spatial dimensions. However, the numerical smearing makes the method not very

accurate and unable to properly produce discontinuities.
With the weakness of IB in mind, several new techniques classified as sharp interface methods have been

developed. The immersed interface method (IIM), as presented in [8,9], handles two- and three-dimensional

interface problems based on the analysis of [2]. The IIM is second order accurate and includes the inter-

facial boundary conditions into the finite difference discretization in such a way that it preserves the jumps

in the solution and its derivatives. In the original IIM this was done by adding additional nodes to the

numerical stencil, leading to a non-symmetric coefficient matrix. This non-symmetric matrix reduces

the numbers of efficient numerical solvers to be used and convergence is not always guaranteed. In fact, the

method has only been shown to be stable for one-dimensional problems and for two-dimensional problems
with piecewise constant coefficients [6].

To avoid this convergence problem, a new version of the IIM was proposed in [12]. A maximum

principle preserving method is enforced to obtain a diagonally dominant linear system. This way, some

iterative methods are guaranteed to converge. The maximum principle approach was successfully imple-

mented with a specially designed multigrid method in [1].

Another sharp interface technique is the ghost fluid method (GFM) introduced in [5] to treat two-phase

contact discontinuities in the Euler equations. The basic principle behind GFM is to extend values across

the interface into an artificial fluid (ghost fluid) inducing the proper conditions at the interface.
The GFM concept was extended in [13] to solve elliptic equations with variable coefficients. One of the

main objectives with their approach was to simplify the IIM and still obtain a sharp solution at the in-

terface. In contrast to IIM, the jump conditions are incorporated into the numerical discretization such that

the symmetry of the finite difference stencil is kept. This allows for most standard solvers to be used. The

method decomposes the flux jumps in each axis direction treating the problem dimension by dimension.

This extended GFM is only first order accurate. The method has been applied to multiphase incompressible

flow in [7].

Decomposing the jump conditions into each axis direction was also done in [11,18] using the IIM where
the coefficients are piecewise constant. The approach in [18] produces a symmetric problem. Instead of

focusing on finding new coefficients for the finite difference scheme they focus on the jumps in the solution

and its derivatives. If the jumps ½u�, ½ux�, ½uxx�, ½uy � and ½uyy � are all known, then the standard finite difference

discretization can be used with some correction terms to adjust for the discontinuities. They also consider

variable coefficients by rewriting the partial differential equation into a more convenient form for their

method. The method shows to be second order accurate.

The intention of this paper is to extend the ideas of [11,13,18] to derive a second order sharp interface

method capable of solving elliptic interface problems with variable coefficients in two dimensions. The
primary objective is to keep the standard finite difference stencil, making only corrections to the right-hand

side of the problem. This way we will keep the linear system symmetric and diagonally dominant. We give a

more formal derivation of the finite difference scheme than found in [13], and the order of accuracy is

improved by including more jump conditions. The main difference from [11,18] is that we also consider the

case with variable coefficients when deriving the correction term. We also propose a simple technique for
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approximating the solution-dependent jump conditions as part of the iterative method. A level set function

[14] is used to represent the interface because of its simplicity and strength in describing fairly complex

shapes.
The rest of the paper is organized as follows: In Section 2 we present the mathematical equations to be

solved, introduce the level set function and decompose the jump conditions. Then, in Section 3 we describe

the numerical discretization for our sharp interface method and suggest an approach to estimate the in-

terfacial jumps. Numerical examples are presented in Section 4 before we conclude with a summary in

Section 5.
2. Mathematical formulation

2.1. The elliptic equation

Consider a domain X divided into two (or more) separate subdomains Xþ and X� by a lower dimen-

sional interface C. The two dimensional variable coefficient elliptic equation is given as

ðbuxÞx þ ðbuyÞy ¼ f ðx; yÞ; ðx; yÞ 2 X; ð1Þ

with Dirichlet boundary conditions

uðx; yÞ ¼ gðx; yÞ; ðx; yÞ 2 dX;

where dX is the exterior boundary and ðx; yÞ are the spatial coordinates. The coefficient bðx; yÞ and source

term f ðx; yÞ are continuous and smooth on each subdomain, but may have jumps across the interface,

i.e.

bðx; yÞ ¼ bþðx; yÞ; ðx; yÞ 2 Xþ;
b�ðx; yÞ; ðx; yÞ 2 X�;

�

and

f ðx; yÞ ¼ f þðx; yÞ; ðx; yÞ 2 Xþ;
f �ðx; yÞ; ðx; yÞ 2 X�:

�

Discontinuities in the coefficient bðx; yÞ and the source term f ðx; yÞ may make the solution and its de-

rivatives discontinuous and non-smooth at the interface. These jumps in solution and its derivatives can be

specified as jump conditions along the interface, i.e.

½u� ¼ wðx; yÞ; ðx; yÞ 2 C; ð2Þ
½bun� ¼ vðx; yÞ; ðx; yÞ 2 C; ð3Þ

where un ¼ ou=on ¼ ru �~n is the normal derivative of u, ~n is the local unit normal vector to the interface

pointing towards the Xþ-region, and the jumps are defined as the limiting values

½u� ¼ lim
ðx;yÞ!Cþ

uðx; yÞ � lim
ðx;yÞ!C�

uðx; yÞ ¼ uþ � u�;
½bun� ¼ lim
ðx;yÞ!Cþ

bðx; yÞunðx; yÞ � lim
ðx;yÞ!C�

bðx; yÞunðx; yÞ ¼ bþuþn � b�u�n :

Here ðx; yÞ ! Cþ means approaching the interface from the Xþ side and ðx; yÞ ! C� from the X� side.
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2.2. Level set representation

The main idea of the level set method is to introduce a smooth auxiliary function /ðx; yÞ defined as

/ðx; yÞ ¼ �d;

where d is the shortest distance to the interface. The sign of / indicates whether ðx; yÞ is in the Xþ-region

(positive) or in the X�-region (negative). It will be evident from the definition above that the interface C is

given by the zero level set of the function /,

C ¼ ðx; yÞ 2 R2 j /ðx; yÞ
�

¼ 0
�
:

The normal vector can easily be deduced from / and at any point is given as ~n ¼ r/=jr/j.
The interface appears as a closed curve in two dimensions. We assume the interface to be infinitely thin

so that our problem domain can be defined as (see Fig. 1)

X ¼ X�; / < 0;
Xþ; /P 0:

�
ð4Þ
2.3. Decomposing the jump conditions

Since the jump conditions usually are defined in normal or tangential direction of the interface we define

a local coordinate system aligned with the interface at ðx�; y�Þ,

n ¼ ðx� x�Þ cos hþ ðy � y�Þ sin h;
g ¼ �ðx� x�Þ sin hþ ðy � y�Þ cos h;

where h is the angle between the x- and n-axis. The n-axis is normal to the interface while the g-axis is

tangential.

Transforming these jump conditions into Cartesian coordinates yields

½bux� ¼ ½bun� cos h� ½bug� sin h;
½buy � ¼ ½bun� sin hþ ½bug� cos h;

and differentiating using the chain rule gives
Fig. 1. An irregular interface C dividing the domain X into two subdomains Xþ and X� with normal vector~n pointing towards the Xþ-

region.
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½ðbuxÞx� ¼ ½ðbunÞn� cos2 h� ð½ðbunÞg� þ ½ðbugÞn�Þ cos h sin hþ ½ðbugÞg� sin
2 h;

½ðbuyÞy � ¼ ½ðbunÞn� sin
2 hþ ð½ðbunÞg� þ ½ðbugÞn�Þ cos h sin hþ ½ðbugÞg� cos2 h:

Similarly, differentiation of the jump ½u� gives

½ux� ¼ ½un� cos h� ½ug� sin h;
½uy � ¼ ½un� sin hþ ½ug� cos h;

and

½uxx� ¼ ½unn� cos2 h� 2½ung� cos h sin hþ ½ugg� sin2 h;

½uyy � ¼ ½unn� sin2 hþ 2½ung� cos h sin hþ ½ugg� cos2 h:

For now we will assume that the jumps ½u�, ½un�, ½unn�, ½ug�, ½ugg�, ½bun�, ½ðbunÞn�, ½bug�, ½ðbugÞg�, ½ðbunÞg� and
½ðbugÞn� are all known. In this way, we can apply a dimension by dimension approach of the numerical

method.
3. Numerical method

3.1. Discretization

For simplicity, we use a uniform, rectangular grid, ½a; b� � ½c; d�, describing the computational domain X.
The grid nodes are equally spaced, h ¼ ðb� aÞ=M ¼ ðd � cÞ=N , where M and N are the number of grid

points in x- and y-direction, respectively. The grid coordinates are defined as

xi ¼ aþ ih; yj ¼ cþ jh for 06 i6M ; 06 j6N ;

and the numerical approximation of u at ðxi; yjÞ is written as Ui;j.

We define a grid node ðxi; yjÞ as regular if all neighbouring nodes are on the same side of the interface. On

the contrary, a grid node ðxi; yjÞ is irregular if at least one adjacent node is on the other side of the interface,
i.e. the interface cuts one of the grid lines between the nodes.

The elliptic equation (1) is approximated with the following discretization

Lb
hUi;j ¼ fi;j � Ci;j; ð5Þ

where Lb
hUi;j is the standard five point variable coefficient central difference scheme

Lb
hUi;j ¼

biþ1=2;jðUiþ1;j � Ui;jÞ � bi�1=2;jðUi;j � Ui�1;jÞ
h2

þ
bi;jþ1=2ðUi;jþ1 � Ui;jÞ � bi;j�1=2ðUi;j � Ui;j�1Þ

h2

and biþ1=2;j denotes bðxiþ1=2;j; yjÞ, and so on. At regular nodes, Lb
hUi;j yields a second order accurate ap-

proximation of the second derivatives, i.e.

ðbuxÞx þ ðbuyÞy ¼ Lb
hUi;j þ Oðh2Þ:

The correction term Ci;j is introduced to make the numerical discretization (5) well-defined at irregular
nodes and should vanish at regular nodes. In the remaining part of this section we will discuss how to find

this correction term.
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3.2. Determining the correction term

As shown in Section 2.3, the jump conditions can be decomposed into jumps in the x- and y-directions
allowing for a dimension by dimension approach. This way, the correction term Ci;j is made up by a

component in x-direction and one in y-direction, i.e.

Ci;j ¼ Cx
i;j þ Cy

i;j ð6Þ

The procedure for obtaining the componentwise correction term is equivalent whether we consider the x-
direction or y-direction. Therefore, we shall only discuss how to find the correction in x-direction. For
simpler notation, we will neglect the subscript j in the notation below, reducing the derivations to a one-

dimensional problem.

We wish to find a correction term so that the standard finite difference approximation of ðbuxÞx is valid
even at the interface. We consider an irregular grid node xi where the interface is located at x� ¼ xi þ ah,
06 a6 1 and a ¼ /i=ð/i � /iþ1Þ: The correction can be derived in two steps. First, we need to correct the
numerical discretization of ux, then, if necessary, the approximation of the second derivative ðbuxÞx also

needs to be corrected.

The first derivative is estimated at the centre between xi and xiþ1. The correction of this approximation

depends on what side of xiþ1=2 the interface is located. In other words, using the definitions of Eq. (4), if

/i < 0 and 0 < a6 1=2 then the interface is to the left of xiþ1=2, i.e. fxiþ1=2; xiþ1g 2 Xþ. Else if 1=2 < a6 1

then fxi; xiþ1=2g 2 X�. Otherwise, if /i P 0, the subregions switches and instead we have if 06 a < 1=2 then

fxiþ1=2; xiþ1g 2 X� or if 1=26 a < 1 then fxi; xiþ1=2g 2 Xþ.

Following the same approach as [11] using Taylor expansion for uðxiþ1Þ at x� ¼ xi þ ah for the case
/i < 0 and 1=2 < a6 1 yields

uðxiþ1Þ ¼ uðx� þ ð1� aÞhÞ ¼ uþ þ uþx ð1� aÞhþ 1
2
uþxxð1� aÞ2h2 þ Oðh3Þ

¼ u� þ u�x ð1� aÞhþ 1
2
u�xxð1� aÞ2h2 þ C1ðx; aÞ þ Oðh3Þ

¼ uðxiþ1=2Þ þ uxðxiþ1=2Þða� 1
2
Þhþ 1

2
uxxðxiþ1=2Þða� 1

2
Þ2h2 þ uxðxiþ1=2Þð1� aÞh

þ 1
2
uxxðxiþ1=2Þð2a� 1Þð1� aÞh2 þ 1

2
uxxðxiþ1=2Þð1� aÞ2h2 þ C1ðx; aÞ þ Oðh3Þ

¼ uðxiþ1=2Þ þ uxðxiþ1=2Þ
h
2
þ 1

2
uxxðxiþ1=2Þ

h
2

� �2

þ C1ðx; aÞ þ Oðh3Þ; ð7Þ

and Taylor expansion for uðxiÞ at xiþ1=2 becomes

uðxiÞ ¼ uðxiþ1=2Þ � uxðxiþ1=2Þ
h
2
þ 1

2
uxxðxiþ1=2Þ

h
2

� �2

þ Oðh3Þ; ð8Þ

where the correction term is given as

C1ðx; aÞ ¼ ½u� þ ½ux�ð1� aÞhþ 1
2
½uxx�ð1� aÞ2h2:

Subtracting Eq. (8) from (7) and rearranging gives

uxðxiþ1=2Þ ¼
uðxiþ1Þ � uðxiÞ

h
� C1ðx; aÞ

h
þ Oðh2Þ:

Or, if 0 < a6 1=2, we Taylor expand uðxiÞ at x� ¼ xi þ ah:
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uðxiÞ ¼ uðx� � ahÞ ¼ u� � u�x ahþ 1
2
u�xxa

2h2 þ Oðh3Þ
¼ uþ � uþx ahþ 1

2
uþxxa

2h2 � C1ðx; aÞ þ Oðh3Þ ¼ uðxiþ1=2Þ � uxðxiþ1=2Þð12 � aÞh
þ 1

2
uxxðxiþ1=2Þð12 � aÞ2h2 � uxðxiþ1=2Þahþ 1

2
uxxðxiþ1=2Þð1� 2aÞah2

þ 1
2
uxxðxiþ1=2Þa2h2 � C1ðx; aÞ þ Oðh3Þ

¼ uðxiþ1=2Þ � uxðxiþ1=2Þ
h
2
þ 1

2
uxxðxiþ1=2Þ

h
2

� �2

� C1ðx; aÞ þ Oðh3Þ ð9Þ

and the Taylor expansion for uðxiþ1Þ at xiþ1=2 will be

uðxiþ1Þ ¼ uðxiþ1=2Þ þ uxðxiþ1=2Þ
h
2
þ 1

2
uxxðxiþ1=2Þ

h
2

� �2

þ Oðh3Þ; ð10Þ

where

C1ðx; aÞ ¼ ½u� � ½ux�ahþ 1
2
½uxx�a2h2:

Again, subtracting Eq. (9) from (10) and rearranging gives

uxðxiþ1=2Þ ¼
uðxiþ1Þ � uðxiÞ

h
� C1ðx; aÞ

h
þ Oðh2Þ:

In the second step, if the flux bux is non-smooth or discontinuous at the interface and 0 < a6 1=2, then
we need a second correction term, C2, for the second derivative. Expanding gives

buxðxiþ1=2Þ ¼ buxðx� þ ð1
2
� aÞhÞ ¼ ðbuxÞþ þ ðbuxÞþx ð12 � aÞhþ Oðh2Þ

¼ ðbuxÞ� þ ðbuxÞ�x ð12 � aÞhþ C2ðx; aÞ þ Oðh2Þ
¼ buxðxiÞ þ ðbuxÞxðxiÞahþ ðbuxÞxðxiÞð12 � aÞh2 þ C2ðx; aÞ þ Oðh2Þ

¼ buxðxiÞ þ ðbuxÞxðxiÞ
h
2
þ C2ðx; aÞ þ Oðh2Þ ð11Þ

and similarly at xi�1=2

buxðxi�1=2Þ ¼ buxðxiÞ � ðbuxÞxðxiÞ
h
2
þ Oðh2Þ; ð12Þ

where

C2ðx; aÞ ¼ ½bux� þ 1
2
½ðbuxÞx�ð1� 2aÞh:

Subtracting Eq. (12) from (11) and rearranging gives

ðbuxÞxðxiÞ ¼
buxðxiþ1=2Þ � buxðxi�1=2Þ

h
� C2ðx; aÞ

h
þ OðhÞ:

To summarize, if we extend this approach to consider the case when the interface is located anywhere

between xi�1 and xiþ1, and we replace u with the numerical approximation U , then we can write

ðbuxÞxðxiÞ ¼
biþ1=2ðUiþ1 � UiÞ � bi�1=2ðUi � Ui�1Þ

h2
þ Ci þ OðhÞ; ð13Þ

with the correction term
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Ci ¼ S/�b
C1ðx; aÞ

h2
þ S/

C2ðx; aÞ
h

; ð14Þ

where

S/ ¼ �1; /i < 0;
1; /i P 0;

�

and

C1ðx; aÞ ¼

½u� � k½ux�ahþ 1
2
½uxx�a2h2; if ð/i P 0 and 06 a < 1=2Þ

or ð/i < 0 and 0 < a6 1=2Þ;
½u� þ k½ux�ð1� aÞhþ 1

2
½uxx�ð1� aÞ2h2; if ð/i P 0 and 06 a < 1=2Þ

or ð/i < 0 and 0 < a6 1; =2Þ;

8>>><
>>>:

C2ðx; aÞ ¼
k½bux� þ 1

2
½ðbuxÞx�ð1� 2aÞh; if ð/i P 0 and 06 a < 1=2Þ

or ð/i < 0 and 0 < a6 1=2Þ;
0; otherwise:

8><
>:

The parameters k, a and �b are defined as follows:

• If the interface is between xi and xiþ1

(i.e. /i � /iþ1 < 0, or /i ¼ 0 and /iþ1 < 0, or /i < 0 and /iþ1 ¼ 0)

k ¼ 1; a ¼ /i=ð/i � /iþ1Þ and �b ¼ biþ1=2:

• If the interface is between xi�1 and xi
(i.e. /i � /i�1 < 0, or /i ¼ 0 and /i�1 < 0, or /i < 0 and /i�1 ¼ 0)

k ¼ �1; a ¼ /i=ð/i � /i�1Þ and �b ¼ bi�1=2:

For both cases, we can define the jump of a function f as

½f � ¼ lim
/þ!0

f ðxÞ � lim
/�!0

f ðxÞ ¼ f þ � f �:
Remark 1. If the solution is smooth and continuous (regular nodes), the jumps become zero and the

correction term vanish.

Remark 2. The local truncation error in Eq. (13) is of first order only, but we can still expect the global

accuracy to approach second order since the interface is of one dimension lower than the problem.

Returning to the two-dimensional case, the x-component in Eq. (6) can be replaced by Eq. (14) and a

similar expression can be found for Cy
i;j making Eq. (5) well-defined at all nodes.

3.3. Approximating the jump conditions

So far we have assumed the interface jump conditions to be known. Unfortunately, that is rarely the case

as they are usually solution-dependent and must be obtained as part of the solution. This is probably the

most difficult task when using sharp interface methods, as it is crucial for both solving the discrete equa-
tions efficiently and maintaining a certain accuracy.
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In higher dimensional problems it is common to use some iterative methods to solve the discretized

equations. The idea is therefore to obtain the correction term iteratively as well. We can approximate the

solution at the interface using Eqs. (2) and (3) by interpolating the result from the previous iteration step (or
initial guess). Then using one-sided difference stencils on both sides of the interface we can approximate the

jump conditions. The correction term is updated and given explicitly at every iteration step, as it converges

to the correct solution.

Using low-order interpolation schemes to approximate the jumps may increase the local truncation

error. To keep the local first order accuracy at irregular nodes we see from Eq. (14) that it is necessary to use

at least a third order accurate interpolation technique when guessing the interfacial values. To provide a

sufficient approximation of the jumps in first and second derivatives, second and first order methods are

needed, respectively. We found the Lagrange polynomial of degree two,

P ðxÞ ¼
X2

i¼0

Y
j¼0
j 6¼i

ðx� xjÞ
ðxi � xjÞ

fi

0
B@

1
CA; ð15Þ

to be sufficient to meet our required accuracy.

The first step in finding the correction term is approximating the solution at the interface. Consider an

irregular grid node ðxi; yjÞ where the interface crosses the horizontal grid line at ðx�; y�Þ, i.e. y� ¼ yj. Using a

set of interpolated values on both sides of the interface, we can reconstruct the boundary conditions (2) and
(3) to solve for the interfacial values at ðx�; y�Þ. The procedure is as follows (see Fig. 2):

(1) Construct a line which is normal to the interface at ðx�; y�Þ using the level set function, e.g find the nor-

mal vector~n ¼ r/=jr/j in the neighbour gridpoints of ðx�; y�Þ, and use linear interpolation to estimate
~n at ðx�; y�Þ.

(2) Chose two points along the normal line on both sides of the interface, e.g. Pþ
1 , P

þ
2 , P

�
1 and P�

2 , with the

distances a1, a2, b1 and b2 from the interface.

(3) Use the nodes surrounding Pþ
1 and the Lagrange polynomial to find a new value Uþ

1 in Pþ
1 . Repeat for

Uþ
2 , U

�
1 and U�

2 in Pþ
2 , P

�
1 and P�

2 . The points, P
þ
1 , P

þ
2 , P

�
1 and P�

2 , must be chosen carefully so that all
surrounding nodes lie on the same side of the interface, e.g. let a1 ¼

ffiffiffi
2

p
h and a2 ¼ 2

ffiffiffi
2

p
h, likewise on the

other side of the interface.

(4) Differentiate Eq. (15) to estimate the normal fluxes at the interface as

bþuþn ¼ bþ
�
� a1 þ a2

a1a2
Uþ

0 þ a2
a1ða2 � a1Þ

Uþ
1 � a1

a2ða2 � a1Þ
Uþ

2

�
;

b�u�n ¼ b� b1 þ b2
b1b2

U�
0

�
� b2
b1ðb2 � b1Þ

U�
1 þ b1

b2ðb2 � b1Þ
U�

2

�
:

Combine this with Eqs. (2) and (3) to obtain the interfacial values as

U�
0 ¼

b� a1a2
b2�b1

b22U
�
1 � b21U

�
2

� �
þ bþ b1b2

a2�a1
a22U

þ
1 � a21U

þ
2

� �
b�a1a2ðb1 þ b2Þ þ bþb1b2ða1 þ a2Þ

� a1a2b1b2vðx�; y�Þ þ bþb1b2ða1 þ a2Þwðx�; y�Þ
b�a1a2ðb1 þ b2Þ þ bþb1b2ða1 þ a2Þ

ð16Þ

and

Uþ
0 ¼ U�

0 þ wðx�; y�Þ: ð17Þ



Fig. 2. (a) The interpolation stencil for finding the values at the interface when y� ¼ yj. (b) The surrounding nodes for the Lagrange

polynomial interpolation. First, interpolate in y-direction, then in x-direction to find Uþ
1 and Uþ

2 .

P.A. Berthelsen / Journal of Computational Physics 197 (2004) 364–386 373
Next, we use the interfacial values to approximate the jumps in Eq. (6) along the x-direction where
a ¼ /i;j=ð/i;j � /i�1;jÞ and b ¼ 1� a,
uþx ¼ 1

h

�
� 2aþ 1

aðaþ 1ÞU
þ
0 þ aþ 1

a
Ui;j �

a
aþ 1

Uiþ1;j

�
;

u�x ¼ 1

h
2bþ 1

bðbþ 1ÞU
�
0

�
� bþ 1

b
Ui�1;j þ

b
bþ 1

Ui�2;j

�
;

uþxx ¼
1

h2
2

aðaþ 1ÞU
þ
0

�
� 2

a
Ui;j þ

2

aþ 1
Uiþ1;j

�
;

u�xx ¼
1

h2
2

bðbþ 1ÞU
�
0

�
� 2

b
Ui�1;j þ

2

bþ 1
Ui�2;j

�
;

bþuþx ¼ bþ

h

�
� 2aþ 1

aðaþ 1ÞU
þ
0 þ aþ 1

a
Ui;j �

a
aþ 1

Uiþ1;j

�
;

b�u�x ¼ b�

h
2bþ 1

bðbþ 1ÞU
�
0

�
� bþ 1

b
Ui�1;j þ

b
bþ 1

Ui�2;j

�
;

ðbþuþx Þx ¼
1

a2ðaþ 1Þ2h2
bþð2a

	n
þ 1Þ2 � bi;jðaþ 1Þ2 � biþ1;ja

2


Uþ

0

� bþða
	

þ 1Þ2ð2aþ 1Þ � bi;jð1� a2Þðaþ 1Þ2 � biþ1;ja
2ðaþ 1Þ2



Ui;j

þ bþa2ð2a
	

þ 1Þ þ bi;ja
2ðaþ 1Þ2 � biþ1;ja

3ð2þ aÞ


Uiþ1;j

o
;
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and finally

ðb�u�x Þx ¼
1

b2ðbþ 1Þ2h2
b�ð2b

	n
þ 1Þ2 � bi�1;jðbþ 1Þ2 � bi�2;jb

2


U�

0

� b�ðb
	

þ 1Þ2ð2bþ 1Þ � bi�1;jð1� b2Þðbþ 1Þ2 � bi�2;jb
2ðbþ 1Þ2



Ui�1;j

þ b�b2ð2b
	

þ 1Þ þ bi�1;jb
2ðbþ 1Þ2 � bi�2;jb

3ð2þ bÞ


Ui�2;j

o
:

Similar expressions can be found for the jumps in y-direction. This procedure is repeated for every ir-

regular node at every iteration step until convergence is reached in solving Eq. (5).

3.4. Solving the discrete equations

The system of linear discretized equations (5) is a symmetric and diagonally dominant matrix problem

which can be solved with most standard linear solvers. Implementation into already existing codes is
straightforward, as all correction applies to the right-hand side of the linear system only. We have suc-

cessfully implemented the method using a Successive Overrelaxation Red–Black Gauss Seidel method.

In each iteration we need to modify the right-hand-side to adjust the discretization at irregular nodes. To

ensure numerical stability and convergence, we found it necessary to underrelax the approximation of the

correction term Ci;j, i.e.

Cl
i;j ¼ Cl�1

i;j � aðCl�1
i;j � Cnew

i;j Þ;

where Cnew
i;j is the correction term approximated from the lth iteration step and a is the underrelaxation

parameter.

The initial guess, normally set equal to zero, for the solution and for the first approximated correction

term, C0
i;j, deviates of course largely from the correct values, and consequently the term ðC0

i;j � Cnew
i;j Þ will be

large. Such large adjustments in the right-hand-side of the discretized system will lead to numerical in-

stabilities. To suppress these instabilities the underrelaxation parameter a was introduced. This effect was

enhanced for finer grids, thereby requiring a smaller a. As the numerical solution was iterated towards the

correct solution, the underrelaxation parameter could slowly be increased and the system would still be

stable. We did not seek for any optimal value, but for the examples below it was sufficient to set a
somewhere between 0.05 and 0.01 in most cases.
4. Numerical examples

We have performed a number of numerical experiments to test our method. From these experiments we

are particularly interested in the accuracy of the computed solution and how well it performs when we

estimate the jumps according to Section 3.3 compared to using the exact jumps. We also compare some of

our results with other authors� work.
All examples below are computed on a square domain X, ½�1; 1� � ½�1; 1�, with equally spaced nodes, so

that Dx ¼ Dy ¼ h and N ¼ M ¼ n. The accuracy of the scheme is found from a grid refinement analysis.
The order of the scheme is given as

order ¼ logðkEnk1=kE2nk1Þ
logð2Þ

����
����;

where we use the maximum norm
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kEnk1 ¼ max
i;j

uðxi; yjÞ
�� � Ui;j

��
to estimate the error using an n� n grid.

We are also interested in finding the error when we mimic the correction term. Let �Ci;j represent the

approximate correction, then the relative error in the correction term is defined as

kCEnk1 ¼
maxi;j Ci;j � �Ci;j

��� ���
maxi;j Ci;j

�� �� :
4.1. Example 1

In the first example we consider a case studied in [8,18]. We solve Laplace�s equation, r2u ¼ 0 and the

interface is defined by the circle x2 þ y2 ¼ 1=4 with the jump conditions ½u� ¼ 0 and ½un� ¼ 2. This can be

considered as a problem where there is a singular source term along the interface, and the exact solution is

given as

uðx; yÞ ¼ 1; x2 þ y2 < 1=4;
1þ logð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ; x2 þ y2 P 1=4:

�

The exterior boundary conditions are given from the exact solution.

Table 1 (top) shows the result of the grid refinement analysis. The first column shows the mesh size. The

next two columns give the maximum error and order of convergence when we use the exact correction term
calculated from the true solution. The last four columns give the result when we approximate the correction

term according to Section 3.3. We notice the absolute error increases when we approximate the correction

term, but both cases show that the convergence approaches second order as the grid is refined.

To explain the discrepancy in error between the two approaches, we replaced Eqs. (16) and (17) with the

exact values given by the solution at the interface. These fixed values were then used to approximate the

one-sided differences at the interface according to Section 3.3. The results are summarized in Table 2. We
Table 1

Grid refinement analysis in example 1

n Exact correction term Approximate correction term

kEnk1 Order kEnk1 Order kCEnk1 Order

20 1.048� 10�3 2.049� 10�2 2.519� 10�2

40 2.403� 10�4 2.12 6.366� 10�3 1.69 8.204� 10�3 1.61

80 6.436� 10�5 1.90 1.760� 10�3 1.85 2.890� 10�3 1.51

160 1.565� 10�5 2.04 4.747� 10�4 1.89 7.550� 10�4 1.94

320 3.185� 10�6 2.30 1.206� 10�4 1.98 1.983� 10�4 1.93

n IIM in [8] EJIIM in [18]

kEnk1 Order kEnk1 Order

20 2.391� 10�3 1.4� 10�3

40 8.346� 10�4 1.52 1.8� 10�4 2.94

80 2.445� 10�4 1.77 6.6� 10�5 1.43

160 6.686� 10�5 1.87 1.9� 10�5 1.77

320 1.567� 10�5 2.09 3.4� 10�6 2.51

Top: results obtained in this study. Bottom: results obtained in [8] and [18].



Table 2

Grid refinement analysis with fixed interface in example 1

n Approximate correction term (fixed interface)

kEnk1 Order kCEnk1 Order

20 7.883� 10�4 5.635� 10�3

40 2.011� 10�4 1.97 1.383� 10�3 2.03

80 5.032� 10�5 2.00 4.430� 10�4 1.64

160 1.267� 10�5 1.99 1.181� 10�4 1.91

320 3.187� 10�6 1.99 2.651� 10�5 2.16
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notice the maximum error decreases significantly and becomes nearly identical to the error obtained when

using the exact correction terms. This is illustrated in Fig. 3 where we plot the error for all three cases

together with the numerical solution on a 40� 40 mesh.

The order of convergence compares well with the results reported in [8,18] for all three cases (see Table 1,

bottom), but an equivalent or better accuracy is only achieved for the case with exact correction term or

with a fixed interface. When we approximate the correction term, the maximum error is worse than ob-

tained in [8,18]. We realize a possible weakness in using Eqs. (16) and (17), though we still find the per-

formance satisfactorily. Alternatively, using even higher order differences complicates the implementation
by involving more grid nodes. More nodes may require higher grid resolution to allow for one-sided dif-

ferences at the interface.

If we look at the accuracy of the approximate correction term, we notice that the relative error, kCEnk1,
decreases almost with a rate of second order. This is better than what we expected and clearly satisfies our
Fig. 3. Example 1. (a) The numerical solution on a 40� 40 mesh. (b) The error when using the exact correction term. (c) The error

when using approximate correction term. (d) The error when using approximate correction term with fixed interface.
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requirements of at least local first order accuracy. Using exact values at the interface improves the error for

the correction term.

4.2. Example 2

Now we consider an example with discontinuous coefficients. The problem is also given by [8,12,18] and

is defined by the variable coefficient elliptic equation

ðbuxÞx þ ðbuyÞy ¼ f ðx; yÞ

with

bðx; yÞ ¼ r2 þ 1; r < 1=2;
b; rP 1=2;

�

and

f ðx; yÞ ¼ 8r2 þ 4;

for jumps ½u� ¼ 0 and ½bun� ¼ C=r, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and C and b are arbitrary constants. The boundary

values are found from the analytical solution,

uðx; yÞ ¼
r2; r < 1=2;

1� 1
8b � 1

b

� �
=4þ r4

2
þ r2

	 

þ C logð2rÞ; rP 1=2:

(

The results are summarized in Table 3 for b ¼ 10 and C ¼ 0:1. The maximum error does not show a

significant difference whether we approximate the correction term or not. The decrease in error is second

order as the grid resolution increases. We obtain better accuracy than [8], but their approach converges
slightly faster as the grid is refined. In [18], the convergence is slower than obtained here, however, their

maximum norm is very close to our results when we approximate the correction term. Again, the relative

error, kCEnk1, in approximating the correction term converges quadratically as the grid is refined.
Table 3

Grid refinement analysis in example 2 with b ¼ 10 and C ¼ 0:1

n Exact correction term Approximate correction term

kEnk1 Order kEnk1 Order kCEnk1 Order

20 9.643� 10�4 1.394� 10�3 1.479� 10�2

40 2.490� 10�4 1.95 3.228� 10�4 2.11 3.479� 10�3 2.09

80 6.315� 10�5 1.98 7.857� 10�5 2.04 9.863� 10�4 1.82

160 1.589� 10�5 1.99 1.925� 10�5 2.03 2.143� 10�4 2.20

320 3.922� 10�6 2.02 4.774� 10�6 2.01 5.782� 10�5 1.89

n IIM in [8] EJIIM in [18]

kEnk1 Order kEnk1 Order

20 3.520� 10�3 7.6� 10�4

40 7.561� 10�4 2.22 2.4� 10�4 1.7

80 1.651� 10�4 2.20 7.9� 10�5 1.6

160 3.600� 10�5 2.20 2.2� 10�5 1.8

320 8.441� 10�6 2.09 5.3� 10�6 2.1

Top: results obtained in this study. Bottom: results obtained in [8] and [18].



Table 4

Grid refinement analysis with fixed interface in example 2 with b ¼ 10 and C ¼ 0:1

n Approximate correction term (fixed interface)

kEnk1 Order kCEnk1 Order

20 5.378� 10�4 4.525� 10�3

40 1.378� 10�4 1.96 1.059� 10�3 2.10

80 3.470� 10�5 1.99 2.732� 10�4 1.95

160 8.704� 10�6 2.00 5.672� 10�5 2.27

320 2.177� 10�6 2.00 1.522� 10�5 1.90
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As in the previous example we want to investigate the effect of replacing Eqs. (16) and (17) with the exact

values given by the true solution. Table 4 summarizes the results. As earlier, we notice improvements in

accuracy. However, for this problem the improvements are not that significant and we believe that Eqs. (16)

and (17) give a fairly good estimate of the values at the interface. Fig. 4 shows the numerical solution and

the error for the three cases.

We also consider the same problem with large jumps in the coefficients at the interface. The results are

given in Table 5 for b ¼ 1000 and b ¼ 0:001 when we approximate the correction term. The method still

converges with second order and the accuracy is slightly better than obtained in [12]. It should be noted that
for small b, the solution in the outer region becomes very large so that the absolute error in Table 5 is

actually small compared to the exact solution. We discuss some numerical problems associated with highly

discontinuous coefficients in more detail in the next example.
Fig. 4. Example 2. (a) The numerical solution on a 40� 40 mesh. (b) The error when using the exact correction term. (c) The error

when using approximate correction term. (d) The error when using approximate correction term with fixed interface.



Table 5

Grid refinement analysis in example 2 with large jumps in the coefficients

n b ¼ 1000, C ¼ 0:1 b ¼ 0:001, C ¼ 0:1

kEnk1 Order kCEnk1 Order kEnk1 Order kCEnk1 Order

32 2.083� 10�4 7.563� 10�4 4.971� 100 1.285� 10�2

64 5.296� 10�5 1.98 1.702� 10�4 2.15 1.176� 100 2.08 3.097� 10�3 2.05

128 1.330� 10�5 1.99 4.731� 10�5 1.85 2.900� 10�1 2.02 7.680� 10�4 2.01

256 3.330� 10�6 2.00 1.234� 10�5 1.93 7.086� 10�2 2.03 1.903� 10�4 2.01

n b ¼ 1000, C ¼ 0:1 b ¼ 0:001, C ¼ 0:1

kEnk1 Order kEnk1 Order

32 5.136� 10�4 9.246� 100

64 8.235� 10�5 2.76 2.006� 100 2.32

128 1.869� 10�5 2.19 5.808� 10�1 1.83

256 4.026� 10�6 2.24 1.374� 10�1 2.10

Top: results obtained in this study with approximated correction term. Bottom: results obtained in [12].
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4.3. Example 3

In this example we consider a composite material problem with piecewise constant coefficients. We are

particularly interested in the case with large differences in material properties. Let

uðx; yÞ ¼

2x
qþ 1þ s2ðq� 1Þ ; r < s;

xðqþ 1Þ � s2ðq� 1Þx=r2
qþ 1þ s2ðq� 1Þ ; rP s;

8>>><
>>>:

where q ¼ b�=bþ, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and s is the radius of the circular interface. This is the solution to r2u ¼ 0

with ½u� ¼ 0 and ½bu� ¼ 0 at the interface and exterior boundary as given by the analytical solution.
In fact, this problem is identical to Example 7.3 in [18] where they reported poor performance for the fast

iterative IIM [10] (FIIM) and their own explicit-jump IIM (EJIIM) in some cases. In EJIIM the correction

term is found from approximating the jumps with one-sided interpolation on one side of the interface only.

Choosing the correct side of the interface may be crucial for the results. They explained this with support

from their observations that the interior solution is pictured by a circular plane and finite differences on this

side represent the normal derivatives exactly, thus the jumps are exact. On the exterior side, the finite

difference representation is not that exact, introducing an error in the jump approximation and reducing the

accuracy of the scheme.
Tables 6 and 7 summarize the results for q ¼ 5000, while Tables 8 and 9 summarize the grid refinement

analysis for q ¼ 1=5000. We have chosen s ¼ 1=2 for both cases. For q ¼ 5000 ðb� � bþÞ we clearly have

uþn � u�n and we may assume that Eq. (16) simplifies into solving u�n ¼ 0 if uþn is finite and not too large (this

is actually not true, but Eq. (16) is mostly influenced by the solution in the interior region as long as uþn is

not too large). On the interior side, the finite differences approximate the normal derivatives exactly.

Therefore, the interface values are correctly approximated. This explains the good performance of our

approach for q ¼ 5000. There are no remarkable differences in accuracy whether we use exact jumps or

approximate them with or without the exact solution at the interface. This is also illustrated in Fig. 5 where
the numerical solution is plotted together with the error for all three cases. The differences in error are small

and all cases show better accuracy than found in [18].



Table 6

Grid refinement analysis in example 3 with q ¼ 5000

n Exact correction term Approximate correction term

kEnk1 Order kEnk1 Order kCEnk1 Order

25 9.811� 10�4 8.185� 10�4 9.441� 10�3

50 2.730� 10�4 1.85 3.278� 10�4 1.32 4.796� 10�3 0.98

100 4.841� 10�5 2.50 5.277� 10�5 2.64 3.046� 10�3 0.65

200 1.260� 10�5 1.94 1.371� 10�5 1.94 1.802� 10�3 0.75

400 3.491� 10�6 1.85 3.653� 10�6 1.91 9.370� 10�4 0.94

n FIIM Interior EJIIM Exterior EJIIM

kEnk1 Order kEnk1 Order kEnk1 Order

25 1.2� 10�2 1.4� 10�3 9.1� 10�2

50 9.2� 10�2 3.5� 10�4 2.0 2.5� 10�2 1.9

100 5.9� 10�2 0.6 9.0� 10�5 2.0 6.8� 10�3 1.9

200 7.7� 10�3 2.9 2.2� 10�5 2.0 2.0� 10�3 1.8

Top: results obtained in this study. Bottom: results obtained in [18].

Table 7

Grid refinement analysis with fixed interface in example 3 with q ¼ 5000

n Approximate correction term (fixed interface)

kEnk1 Order kCEnk1 Order

25 8.136� 10�4 9.410� 10�3

50 2.249� 10�4 1.85 4.611� 10�3 1.03

100 5.137� 10�5 2.13 3.044� 10�3 0.60

200 1.372� 10�5 1.90 1.803� 10�3 0.76

400 3.423� 10�6 2.00 9.368� 10�4 0.94

Table 8

Grid refinement analysis in example 3 with q ¼ 1=5000

n Exact correction term Approximate correction term

kEnk1 Order kEnk1 Order kCEnk1 Order

25 1.635� 10�3 2.267� 10�2 6.126� 10�2

50 4.549� 10�4 1.85 7.038� 10�3 1.68 1.843� 10�2 1.73

100 8.066� 10�5 2.50 1.934� 10�3 1.86 7.108� 10�3 1.37

200 2.102� 10�5 1.94 5.209� 10�4 1.89 3.103� 10�3 1.20

400 5.823� 10�6 1.85 1.346� 10�4 1.95 1.280� 10�3 1.28

n FIIM Interior EJIIM Exterior EJIIM

kEnk1 Order kEnk1 Order kEnk1 Order

25 5.2� 10�3 1.9� 10�3 1.3� 101

50 1.6� 10�3 1.7 5.5� 10�4 1.8 5.6� 100 1.3

100 2.3� 10�4 2.8 1.3� 10�4 2.1 6.4� 10�1 3.1

200 5.0� 10�5 2.2 3.2� 10�5 2.0 8.1� 10�2 3.0

Top: results obtained in this study. Bottom: results obtained in [18].
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For q ¼ 1=5000 ðb� � bþÞ we may assume that Eq. (16) simplifies into solving uþn ¼ 0 if u�n is finite

and not too large. In this case, the finite difference approximation of the normal derivative is less accurate

on the exterior side, resulting in an inaccurate approximation of the values at the interface. This explains



Table 9

Grid refinement analysis with fixed interface in example 3 with q ¼ 1=5000

n Approximate correction term (fixed interface)

kEnk1 Order kCEnk1 Order

25 1.356� 10�3 9.410� 10�3

50 3.748� 10�4 1.85 4.611� 10�3 1.03

100 8.560� 10�5 2.13 3.044� 10�3 0.60

200 2.287� 10�5 1.90 1.803� 10�3 0.76

400 5.703� 10�6 2.00 9.368� 10�4 0.94

Fig. 5. Example 5, q ¼ 5000. (a) The numerical solution on a 50� 50 mesh. (b) The error when using the exact correction term. (c) The

error when using approximate correction term. (d) The error when using approximate correction term with fixed interface.
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why the accuracy is lower when we use Eqs. (16) and (17) to approximate the correction terms. If we
instead replace Eqs. (16) and (17) with the exact values when approximating the jumps, the accuracy

becomes nearly identical with the case where we use exact jumps to find the correction terms. This is also

shown in Fig. 6.

Despite the lower accuracy obtained for q ¼ 1=5000 when we used approximate correction terms, the

performance of our method seems acceptable. The result obtained on the coarsest grid for q ¼ 1=5000 is

still better than the best approximation with the exterior EJIIM in [18], but it is worse than the results

obtained with the FIIM or interior EJIIM. The rate of convergence is second order for all cases. The

relative error, kCEnk1, in approximating the correction term converges only with a first order rate here.
This is actually what we first expected when we derived the scheme for finding the jumps at the interface.



Fig. 6. Example 5, q ¼ 1=5000. (a) The numerical solution on a 50� 50 mesh. (b) The error when using the exact correction term.

(c) The error when using approximate correction term. (d) The error when using approximate correction term with fixed interface.
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4.4. Example 4

In the two remaining examples we will only focus on the performance of approximating the correction

term. We want to compare the performance of the method with constant and variable coefficients by

solving two different problems leading to the same exact solution,

uðx; yÞ ¼ ex cos y; x2 þ y2 < 1=4;
0; x2 þ y2 P 1=4;

�

with a discontinuity at the interface.

Case I is defined by r2u ¼ 0 with jumps ½u� ¼ �ex cos y and ½un� ¼ 2exðy sin y � x cos yÞ (this example is

also found in [8,13]). In Case II, we solve the variable coefficient elliptic equation ðbuxÞx þ ðbuyÞy ¼ f ðx; yÞ,
where

bðx; yÞ ¼ x2 þ y2 þ 1; x2 þ y2 < 1=4;
1; x2 þ y2 P 1=4;

�

f ðx; yÞ ¼ 2exðy sin y � x cos yÞ; x2 þ y2 < 1=4;
0; x2 þ y2 P 1=4;

�

and the jumps are ½u� ¼ �ex cos y and ½bun� ¼ 2exðx2 þ y2 þ 1Þðy sin y � x cos yÞ. The exterior boundary

condition is u ¼ 0 for both cases.

The results from Case I and II are summarized in Table 10 where we have used approximate correction

terms. We can see how the discontinuity is captured sharply in Fig. 7. The accuracy of both numerical



Fig. 7. Example 4. The numerical solution on a 40� 40 mesh.

Table 10

Grid refinement analysis in example 4

n Case I Case II

kEnk1 Order kCEnk1 Order kEnk1 Order kCEnk1 Order

20 6.429� 10�4 1.964� 10�4 7.771� 10�4 2.309� 10�3

40 1.895� 10�4 1.76 3.026� 10�5 2.70 2.302� 10�4 1.76 4.947� 10�4 2.22

80 5.085� 10�5 1.90 6.417� 10�6 2.24 6.193� 10�5 1.89 1.452� 10�4 1.77

160 1.321� 10�5 1.94 8.480� 10�7 2.92 1.601� 10�5 1.95 3.357� 10�5 2.11

320 3.342� 10�6 1.98 1.047� 10�7 3.02 4.051� 10�6 1.98 8.689� 10�6 1.94

n Results obtained in [8]

kEnk1 Order

20 4.379� 10�4

40 1.079� 10�4 2.02

80 2.778� 10�5 1.95

160 7.499� 10�6 1.89

320 1.740� 10�6 2.11

Top: results obtained in this study. Bottom: results obtained in [8] for Case I.
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solutions agrees well with each other and both converge quadratically. In Case I, the relative error,

kCEnk1, in the correction term becomes negligibly small already at coarse grids. The rate of convergence of

kCEnk1 is close to three. The relative error in the correction term in Case II is also remarkably low

compared to previous examples. We have also included the results obtained in [8] for Case I in Table 10.

Their results are slightly better than what we achieved, but the differences are not significant.

4.5. Example 5

For this example we solve one problem with different shapes of the interface. Consider the variable

coefficient Elliptic equation ðbuxÞx þ ðbuyÞy ¼ f ðx; yÞ with the coefficient

bðx; yÞ ¼ x2 þ y2 þ 1; /ðx; yÞ < 0;
xþ 2; /ðx; yÞP 0;

�

and source term



Table 11

Grid refinement analysis in example 5

n Case I Case II

kEnk1 Order kCEnk1 Order kEnk1 Order kCEnk1 Order

20 4.141� 10�4 1.591� 10�3

40 1.205� 10�4 1.78 3.578� 10�4 2.15 1.732� 10�4 3.935� 10�4

80 3.254� 10�5 1.89 1.038� 10�4 1.79 4.916� 10�5 1.82 1.029� 10�4 1.94

160 8.365� 10�6 1.96 2.406� 10�5 2.11 1.109� 10�5 2.15 2.469� 10�5 2.06

320 2.130� 10�6 1.97 6.141� 10�6 1.97 2.933� 10�6 1.91 5.468� 10�6 2.17
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f ðx; yÞ ¼ 2exðy sin y � x cos yÞ; /ðx; yÞ < 0;
�2x� 3; /ðx; yÞP 0:

�

The jumps are given as ½u� ¼ x� y2 � ex cos y and ½bun� ¼ fxþ 2� ðx2 þ y2þ1Þex cos ygnxþ
f�2yðxþ 2Þ þ ðx2 þ y2 þ 1Þex sin ygny , where the normal vector ~n ¼ ðnx; nyÞ is given as r/=jr/j.

For Case I, we define the level set function /ðx; yÞ as follows:

/ðx; yÞ ¼ signðx2 þ y2 � 1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 � 1=4

p
:

For Case II, the level set function is obtained by solving the minimum value problem

d ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� X ðhÞÞ2 þ ðy � Y ðhÞÞ2

q
;

where the interface is given by the parametrized curve ðX ðhÞ; Y ðhÞÞ,

X ðhÞ ¼ 3

8
cosðhÞ � 1

4
cosð3hÞ;

Y ðhÞ ¼ 2

3
sinðhÞ � 1

12
sinð3hÞ þ 1

15
sinð7hÞ;

for h 2 ½0; 2pÞ. Then /ðx; yÞ ¼ �d, where the negative sign corresponds to the inner region enclosed by the

curve ðX ðhÞ; Y ðhÞÞ, while the plus sign is for the outer region. The exterior boundary conditions are given
from the exact solution
Fig. 8. Example 5. (a) Numerical solution on a 40� 40 mesh, Case I. (b) Numerical solution on a 40� 40 mesh, Case II.
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uðx; yÞ ¼ ex cos y; /ðx; yÞ < 0;
x� y2; /ðx; yÞP 0:

�

The grid refinement analysis is summarized in Table 11, and Fig. 8 shows the numerical results for both

interface shapes. We had to omit the coarsest grid for the irregular shaped interface to allow for one-sided

differences. For both cases, the accuracy is high and the rate of convergence is second order. The relative

error, kCEnk1, in correction terms are almost identical, regardless of interface shape. The accuracy does
not seem to be affected by the irregular interface as long as the grid resolution is high enough to allow for

one-sided differences at the interface.
5. Summary

We have derived a finite difference method for two-dimensional elliptic equations with discontinuous,

variable coefficients and source terms. Numerical experiments show good agreement with analytical so-
lutions, and the rate of convergence is found to be of second order. The method decomposes the interface

problem and introduces componentwise correction terms at irregular grid nodes to make the difference

scheme well-defined across interfaces. These correction terms are derived so that the difference stencil re-

mains symmetric and diagonally dominant, allowing for most standard solvers to be used. The main ad-

vantage of the present approach is to preserve the symmetry of the discretized elliptic problem for more

general coefficients than in previous methods, i.e. piecewise smooth coeffecients, with higher order accuracy.

We have also proposed a new method for estimating the solution-dependent correction terms. The main

idea is to obtain the correct correction term iteratively in parallel with the solution. Using sufficient und-
errelaxation on the approximated correction term gives a converging solution. Optimizing the value of the

underrelaxation parameter is crucial for the number of iterations required, and a separate study of this issue

could be of interest.

The approximate correction approach does not seem to influence the accuracy noticeably. However, for

some cases the values estimated at the interface become too inaccurate, increasing the maximum error of the

scheme. Despite this weakness, test cases show second order convergence and the accuracy is found to be

acceptable. The only restriction is a sufficient grid resolution to allow for one-sided differencing at the interface.

The present method is very simple to implement in existing codes. It does not require constructions of
complex coefficient matrices, as required by many other immersed interface methods. We believe an ex-

tension to three dimensions should be straight forward following the same approach as presented here.
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